Рассылка Mensh.ru #41

Полное иллюстированное описание суперсолнечного дома Cliff House, оборудованного уникальной солнечной системой отопления, охлаждения и вентиляции

Основные принципы теплозащиты домов

Сопротивление теплопередаче

Наружные стены, окна, крыша (ограждающие конструкции) защищают наш дом от низких температур, сильного ветра, осадков. При этом они препятствуют прониканию тепла из внутреннего помещения наружу вследствие своего сопротивления теплопередаче. В зависимости от толщины материала конструкция может иметь различное сопротивление теплопередаче: чем больше толщина материала, тем лучшими теплозащитными свойствами обладает ограждение.

Способы передачи тепла

Тепло может передаваться разными способами:

В чистом виде теплопроводность наблюдается только в сплошных твердых телах. Тепло передается непосредственно через материал или от одного материала другому при их соприкосновении. Высокой теплопроводностью обладают плотные материалы. Воздух имеет низкую теплопроводность. Поэтому через материалы с большим количеством замкнутых пор, заполненных воздухом, тепло передается плохо, и они могут использоваться в качестве теплоизоляционных.

Конвекция характерна для жидких и газообразных сред, где перенос тепла происходит в результате движения молекул. Конвективный теплообмен наблюдается у поверхности стен при наличии температурного перепада между конструкцией и соприкасающимся с ней воздухом. В окнах жилых домов конвективный теплообмен происходит между поверхностями остекления, обращенными внутрь воздушной прослойки. Нагреваясь от внутреннего стекла, теплый воздух поднимается вверх. При соприкосновении с холодным наружным стеклом воздух отдает свое тепло и, охлаждаясь, опускается вниз. Такая циркуляция воздуха в воздушной прослойке обусловливает конвективный теплообмен. Чем больше разность температур поверхностей, тем интенсивнее теплообмен между ними.

Излучение происходит в газообразной среде путем передачи тепла с поверхности тела через пространство (в виде энергии электромагнитных волн). Благодаря лучистому теплообмену поверхность Земли обогревается Солнцем, находящимся от нее на значительном расстоянии. Аналогичным образом осуществляется передача тепла излучением между двумя поверхностями, расположенными в стене и разделенными воздушной прослойкой. Нагретая поверхность радиатора излучает тепло и обогревает помещение. Чем выше температура поверхности отопительного прибора, тем сильнее обогревается помещение.

Свойства материалов

Все тела, имеющие температуру выше абсолютного нуля, излучают тепло, которое частично отражается, частично поглощается. Если вся падающая на тело лучистая энергия отражается, то такое тело называется абсолютно белым. Если вся падающая энергия поглощается, то тело называется абсолютно черным.

Строительные материалы также частично отражают и частично поглощают энергию, хотя и в меньшей степени, чем абсолютно белое и абсолютно черное тело. Они называются серыми телами.

Светлая и гладкая поверхность отражает большую часть падающей энергии. Чем темнее и шершавее поверхность тела, тем больше энергии она поглощает. Поглощенная телом лучистая энергия превращается в тепловую и вызывает повышение температуры. Поэтому для уменьшения перегрева помещений верхнего этажа в летнее время целесообразно покрытие крыши изготавливать из оцинкованной кровельной стали, а не из рубероида. Благодаря блестящей светлой поверхности сталь отражает значительную часть излучения и нагревается меньше, чем рубероид, имеющий темную поверхность и интенсивнее поглощающий лучистую энергию.

Передача тепла через стены осуществляется главным образом вследствие теплопроводности. Количество тепла, проходящего через стену, зависит от коэффициента теплопроводности материала. Чем он выше, тем больше теплоты проходит через материал и тем хуже его теплозащита. Различные строительные материалы имеют разные коэффициенты теплопроводности. На них влияют различные факторы, в частности, плотность и влажность материала.

Плотный материал имеет больший коэффициент теплопроводности по сравнению с пористым. Увеличение плотности способствует повышению коэффициента теплопроводности. Уменьшение плотности приводит к снижению коэффициента теплопроводности. Это объясняется тем, что поры строительного материала заполнены воздухом, имеющим низкий коэффициент теплопроводности. Чем больше пор в материале, тем меньше его плотность и теплопроводность.

Влажность

Влажность способствует повышению теплопроводности: сырой материал имеет больший коэффициент теплопроводности и обладает худшими теплозащитными характеристиками по сравнению с сухим. Это вызвано тем, что при увлажнении материала его поры заполняются водой, имеющей высокий коэффициент теплопроводности (примерно в 20 раз больший, чем воздух). Чем больше влаги впитывает материал, тем выше становится его теплопроводность. Например, при повышении влажности кирпичной стены толщиной 51 см из обыкновенного глиняного кирпича с нормальной, равной 2%, до 8%, ее теплозащита ухудшается более чем на 30%. И если при температуре внутреннего воздуха +20°С и наружного -20°С на поверхности сухой стены температура составляет 14,4°С, то на сырой стене на 2,7°С меньше, и равняется 11,7°С. Поэтому для теплозащиты домов очень важно, чтобы строительный материал, и в первую очередь утеплитель, был обязательно сухим, а конструкции наружных ограждений были сделаны с таким расчетом, чтобы в них не образовывался конденсат и не скапливалась влага, приводящая к ухудшению теплоизоляционной способности стен, окон, чердачных перекрытий, полов 1-го этажа.

Тепловые потери

На теплопотери через ограждения наибольшее влияние оказывает их способность передавать тепло, которое зависит от коэффициента теплопроводности и толщины материала. Чем меньше коэффициент теплопроводности и толще стена, тем больше ее термическое сопротивление (передача тепла) и лучше ее теплозащитные свойства.

Кроме того, количество теряемого тепла зависит от:

Чем интенсивнее происходит теплообмен, тем больше тепла теряется из помещения и передается внутренней поверхности конструкции или отдается поверхностью стены наружу, тем меньше сопротивление теплообмену и хуже теплозащита.

Таким образом, теплозащитная способность стены, ее сопротивление теплопередаче зависят от интенсивности передачи тепла на 3-х участках:

Каждый из этих участков имеет свое сопротивление. Общее сопротивление теплопередаче представляет собой их сумму.

При строительстве дома всегда возникает вопрос с удалением отходов. При отсутствии центральной канализации многие, долго не мудрствуя, делают теплый туалет с выгребной ямой и вынуждены поэтому постоянно пользоваться услугами ассенизаторов. Некоторые «купились» на рекламу, предлагающую «биотуалеты», которые на самом деле являются просто химическими туалетами и производят ядовитые химические продукты, а не окисленные продукты биоразложения. Но уже несколько десятков лет существуют настоящие биологические туалеты, в которых копируются природные процессы биоразложения до безопасного и полезного удобрения. Одним из известнейших является классический однокамерный биоректор Clivus Multrum. Единственное серьезное препятствие к его использованию во многих странах — достаточно высокая стоимость. В университете Мак-Гилл (Монреаль, Канада) была разработана упрощенная версия этого биоректора под названием Clivus Minimus для изготовления в домашних условиях. Получить чертежи и инструкции по запуску в работу и эксплуатации этого компостирующего туалета можно Здесь